
Midterm Exam Calculus 2

21 March 2024, 18:30-20:30

The exam consists of 4 problems. You have 120 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points. Cal-
culators, books and notes are not permitted.

1. [8+7+5 = 20 Points]

Let f : R2 → R be defined as

f(x, y) =

{
x2y
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

(a) Use the definition of partial derivatives to calculate fx(0, 0) and fy(0, 0).

(b) Let a ∈ R with a 6= 0, and let r(t) = (t, at). Show that the composite function
f ◦ r : R→ R, t 7→ f(r(t)) is differentiable at t = 0.

(c) Compute ∇f(0, 0) · r′(0). Reconcile this result with your result in part (b) to
conclude on the differentiability of f at (x, y) = (0, 0).

2. [12+8 = 20 Points]

Let C be the curve parametrized by r : [0, 2π]→ R3, t 7→ r(t) with

r(t) = et cos t i + et sin t j + et k.

(a) Find the length of the curve C and its parametrization by arc length.

(b) For each point on C, compute the curvature of C at this point.

3. [5+10+10 = 25 Points]

Let S be the ellipsoid in R3 defined by

x2 +
y2

4
+
z2

9
= 3

which contains the point (x0, y0, z0) = (1, 2, 3).

(a) Compute the tangent plane of S at the point (x0, y0, z0).

(b) Use the Implicit Function Theorem to show that near the point (x0, y0, z0) the
ellipsoid S is locally given as the graph of a function over the (x, y) plane, i.e.
there is a function f : (x, y) 7→ f(x, y) such that near (x0, y0, z0) the ellipsoid
is locally given by z = f(x, y). Compute the partial derivatives fx and fy at
(x0, y0) and show that the graph of the linearization of f at (x0, y0) agrees with
the tangent plane found in part (a).
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(c) For a point P = (x, y, z) in S, there is a box inscribed in S with corners
(x, y, z), (x, y,−z), (x,−y,−z), (x,−y, z), (−x, y, z), (−x, y,−z), (−x,−y,−z)
and (−x,−y, z). Use the method of Lagrange multipliers to determine the box
with largest possible volume.

4. [25 Points]

Let D be the region in the first quadrant of R2 enclosed by the parabolas y = x2

and x = y2 as shown in the figure below. For the vector field F : R2 → R2,
(x, y) 7→ P (x, y) i +Q(x, y) j = xy i + y2 j, compute both sides of the equation

¨
D

(
∂

∂x
Q− ∂

∂y
P

)
dA =

˛
C

P dx+Q dy,

where C is the piecewise smooth curve that forms the boundary of D with the
orientation indicated by the arrows in the figure.

D

y=x2

x=y2

x

y



Solutions

1. (a) Following the definition, the partial derivative of f with respect to x at (x, y) =
(0, 0) is

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

h2·0
h2+02

− 0

h
= lim

h→0
0 = 0.

Similarly

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

02·h
02+h2

− 0

h
= lim

h→0
0 = 0.

(b) Let g = f ◦ r. Then

g(t) =

{
at3

t2+a2t2
if t 6= 0

0 if t = 0
.

For the differentiability of g at t = 0 consider for h 6= 0, the difference quotient

g(h)− g(0)

h
=

ah3

h2+a2h2
− 0

h
=

ah3

h3 + a2h3
=

a

1 + a2
.

As the difference quotient has a limit for h → 0 we conclude that g is differen-
tiable at t = 0 and the derivative is g′(0) = a

1+a2
.

(c) From part (a) we have ∇f(0, 0) = (0, 0). We have r′(0) = (1, a). So ∇f(0, 0) ·
r′(0) = 0. If f would be differentiable at (x, y) = (0, 0) then by the Chain Rule
the derivative of f ◦ r at t = 0 would be ∇f(0, 0) · r′(0) = 0 which does not
agree with the result in part (b). We conclude that f is not differentiable at
(x, y) = (0, 0).

2. (a) The arc length is defined as

s(t) =

ˆ t

0

|r′(τ)| dτ .

We have r′(t) = et(cos t− sin t) i + et(sin t+ cos t) j + et k, and hence

|r′(t)| = et
√

(cos t− sin t)2 + (sin t+ cos t)2 + 1 = et
√

2 cos2 t+ 2 sin2 t+ 1 = et
√

3.

Hence

s(t) =

ˆ t

0

eτ
√

3 dτ = (et − 1)
√

3.

Solving for t gives

t(s) = ln(
s√
3

+ 1).

So the parametrization of C by arc length is given by

r̃(s) = r(t(s)) = et(s) cos t(s) i + et(s) sin t(s) j + et(s) k

= (
s√
3

+ 1)(cos ln(
s√
3

+ 1) i + sin ln(
s√
3

+ 1) j + k)

where 0 ≤ s ≤ (e2π − 1)
√

3.



(b) The curvature κ is defined as

κ =

∣∣∣∣dTds
∣∣∣∣ ,

where T is the unit tangent vector. By the chain rule

κ =
1

|r′(t)|

∣∣∣∣dTdt
∣∣∣∣ ,

From part (a) we get

T =
1

|r′(t)|
r′(t) =

1√
3

(
(cos t− sin t) i + (sin t+ cos t) j + k

)
which gives

dT

dt
=

1√
3

(
(− sin t− cos t) i + (cos t− sin t) j

)
and hence by a similar computation as in part (a)∣∣∣∣dTdt

∣∣∣∣ =

∣∣∣∣ 1√
3

(
(− sin t− cos t) i + (cos t− sin t) j

)∣∣∣∣ =

√
2√
3
.

The curvature of C at r(t) is thus

κ =
1

et
√

3
·
√

2√
3

=

√
2

3
e−t.

3. (a) The ellipsoid S is given by the zero-level set of the function F (x, y, z) = x2 +
y2

4
+ z2

9
− 3. We can hence find a normal vector of the tangent plane of S at

(x0, y0, z0) from ∇F (x0, y0, z0) = 2x0i+ 1
2
y0j+ 2

9
z0k = 2i+ 1j+ 2

3
k. The tangent

plane is hence given by ∇F (x0, y0, z0) · (x− x0, y − y0, z − z0) = 0, i.e.

2(x− 1) + (y − 2) +
2

3
(z − 3) = 0

or equivalently,
6x+ 3y + 2z = 18.

(b) Using the fact that S is given by the zero-level set of the function F defined
in part (a) the local existence of the function f follows from the Implicit Func-
tion Theorem if we can show that ∂F

∂z
(x0, y0, z0) 6= 0. The latter follows from

∂F
∂z

(x0, y0, z0) = 2
9
z0 = 2

3
. The Implicit Function Theorem gives

fx(x0, y0) = − Fx(x0, y0, z0)
.Fz(x0, y0, z0)

= −2x0
2
9
z0

= −2
2
3

= −3

and

fy(x0, y0) = −Fy(x0, y0, z0)
Fz(x0, y0, z0)

= −
1
2
y0

2
9
z0

= −1
2
3

= −3

2
.

The linearization of f at (x0, y0) is given by

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

= 3− 3(x− 1)− 3

2
(y − 2)

= 9− 3x− 3

2
y.



The graph of the linearization is given by the equation z = L(x, y) which agrees
with the tangent plane found in part (a).

(c) The volume of the box is given by V (x, y, z) = 8xyz. It follows from the Theorem
on Lagrange Multipliers that at a critical point (x, y, z) ∈ S of V restricted to
S there is a λ ∈ R such that ∇V (x, y, z) = λ∇F (x, y, z) where we use that the
constraint S is given by the zero-level set of the function F defined in part (a).
In order to find the critical points we have to solve the set of equations

Vx(x, y, z) = λFx(x, y, z),

Vy(x, y, z) = λFy(x, y, z),

Vz(x, y, z) = λFz(x, y, z),

F (x, y, z) = 0.

for x, y, z and λ. This gives

8yz = λ2x,

8xz = λ
1

2
y,

8xy = λ
2

9
z,

x2 +
y2

4
+
z2

9
= 3,

As for x = 0, y = 0 or z = 0, V (x, y, z) = 0 we can assume x, y, z 6= 0. We then
get

4
yz

x
= λ,

16
xz

y
= λ,

36
xy

z
= λ,

x2 +
y2

4
+
z2

9
= 3.

Equating the left sides of the first and the second equality gives y = 2x. Equating
the left sides of the first and the third equality gives z = 3x. This allows one to
eliminate y and z in the last equality to get 3x2 = 3 which gives x = 1 (or x = −1
which we can discard by symmetry). So we get y = 2x = 2 and z = 3x = 3.
The largest volume is hence V = 8 · 1 · 2 · 3 = 48.

4. (a) We start with the computation of the left hand side. We have

∂Q

∂x
− ∂P

∂y
= 0− x = −x.

Hence ¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

ˆ 1

0

ˆ √x
x2
−x dy dx =

ˆ 1

0

−x(
√
x− x2) dx

=

ˆ 1

0

(−x3/2 + x3) dx = −2

5
x5/2 +

1

4
x4
∣∣∣∣1
0

= −2

5
+

1

4
=

5− 8

20
= − 3

20
.



We now compute the right hand side of the equation. We have C = C1∪C2 where
C1 corresponds to the part of the parabola y = x2 which has parametrization
r1(t) = (t, t2), 0 ≤ t ≤ 1. The tangent vector corresponding to the parametriza-
tion r1 gives the desired orientation shown in figure. The part C2 corresponds to
the parabola x = y2 which can be parametrized by r2(t) =

(
(1− t)2, 1− t

)
with

0 ≤ t ≤ 1. The tangent vector associated with r2 gives the desired orientation
on C2 shown in the figure.. Using r′1(t) = (1, 2t) and r′2(t) = (−2(1− t),−1), we
get

˛
C

Pdx+Qdy =

ˆ 1

0

F(r1(t)) · r′1(t) dt+

ˆ 1

0

F(r2(t)) · r′2(t) dt

=

ˆ 1

0

(t · t2, t4) · (1, 2t) dt+

ˆ 1

0

(
(1− t)2(1− t), (1− t)2

)
· (−2(1− t),−1) dt

=

ˆ 1

0

(t3 + 2t5) dt+

ˆ 1

0

(
− 2(1− t)4 − (1− t)3

)
dt

=
1

4
+

2

6
+

ˆ 1

0

(
2s4 + s2

)
ds

=
1

4
+

1

3
+
(2

5
s5 +

1

3
s3
)∣∣∣∣0

1

=
1

4
+

1

3
− 2

5
− 1

3
=

5− 8

20
= − 3

20
.


