Midterm Exam Calculus 2

21 March 2024, 18:30-20:30

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points. Calculators, books and notes are not permitted.

1. [8+7+5 = 20 Points]

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Use the definition of partial derivatives to calculate $f_x(0,0)$ and $f_y(0,0)$.
- (b) Let $a \in \mathbb{R}$ with $a \neq 0$, and let $\mathbf{r}(t) = (t, at)$. Show that the composite function $f \circ \mathbf{r} : \mathbb{R} \to \mathbb{R}$, $t \mapsto f(\mathbf{r}(t))$ is differentiable at t = 0.
- (c) Compute $\nabla f(0,0) \cdot \mathbf{r}'(0)$. Reconcile this result with your result in part (b) to conclude on the differentiability of f at (x,y) = (0,0).

2. [12+8 = 20 Points]

Let C be the curve parametrized by $\mathbf{r}:[0,2\pi]\to\mathbb{R}^3$, $t\mapsto\mathbf{r}(t)$ with

$$\mathbf{r}(t) = e^t \cos t \,\mathbf{i} + e^t \sin t \,\mathbf{j} + e^t \,\mathbf{k}.$$

- (a) Find the length of the curve C and its parametrization by arc length.
- (b) For each point on C, compute the curvature of C at this point.

3. [5+10+10 = 25 Points]

Let S be the ellipsoid in \mathbb{R}^3 defined by

$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 3$$

which contains the point $(x_0, y_0, z_0) = (1, 2, 3)$.

- (a) Compute the tangent plane of S at the point (x_0, y_0, z_0) .
- (b) Use the Implicit Function Theorem to show that near the point (x_0, y_0, z_0) the ellipsoid S is locally given as the graph of a function over the (x, y) plane, i.e. there is a function $f:(x,y)\mapsto f(x,y)$ such that near (x_0,y_0,z_0) the ellipsoid is locally given by z=f(x,y). Compute the partial derivatives f_x and f_y at (x_0,y_0) and show that the graph of the linearization of f at (x_0,y_0) agrees with the tangent plane found in part (a).

(c) For a point P = (x, y, z) in S, there is a box inscribed in S with corners (x, y, z), (x, y, -z), (x, -y, -z), (x, -y, z), (-x, y, z), (-x, y, -z), (-x, -y, -z) and (-x, -y, z). Use the method of Lagrange multipliers to determine the box with largest possible volume.

4. [25 Points]

Let D be the region in the first quadrant of \mathbb{R}^2 enclosed by the parabolas $y=x^2$ and $x=y^2$ as shown in the figure below. For the vector field $\mathbf{F}:\mathbb{R}^2\to\mathbb{R}^2$, $(x,y)\mapsto P(x,y)\,\mathbf{i}+Q(x,y)\,\mathbf{j}=xy\,\mathbf{i}+y^2\,\mathbf{j}$, compute both sides of the equation

$$\iint_{D} \left(\frac{\partial}{\partial x} Q - \frac{\partial}{\partial y} P \right) dA = \oint_{C} P dx + Q dy,$$

where C is the piecewise smooth curve that forms the boundary of D with the orientation indicated by the arrows in the figure.

Solutions

1. (a) Following the definition, the partial derivative of f with respect to x at (x, y) = (0, 0) is

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^2 \cdot 0}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} 0 = 0.$$

Similarly

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0^2 \cdot h}{0^2 + h^2} - 0}{h} = \lim_{h \to 0} 0 = 0.$$

(b) Let $g = f \circ \mathbf{r}$. Then

$$g(t) = \begin{cases} \frac{at^3}{t^2 + a^2t^2} & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{cases}$$

For the differentiability of g at t=0 consider for $h\neq 0$, the difference quotient

$$\frac{g(h) - g(0)}{h} = \frac{\frac{ah^3}{h^2 + a^2h^2} - 0}{h} = \frac{ah^3}{h^3 + a^2h^3} = \frac{a}{1 + a^2}.$$

As the difference quotient has a limit for $h \to 0$ we conclude that g is differentiable at t = 0 and the derivative is $g'(0) = \frac{a}{1+a^2}$.

- (c) From part (a) we have $\nabla f(0,0) = (0,0)$. We have $\mathbf{r}'(0) = (1,a)$. So $\nabla f(0,0) \cdot \mathbf{r}'(0) = 0$. If f would be differentiable at (x,y) = (0,0) then by the Chain Rule the derivative of $f \circ \mathbf{r}$ at t = 0 would be $\nabla f(0,0) \cdot \mathbf{r}'(0) = 0$ which does not agree with the result in part (b). We conclude that f is not differentiable at (x,y) = (0,0).
- 2. (a) The arc length is defined as

$$s(t) = \int_0^t |\mathbf{r}'(\tau)| d\tau.$$

We have $\mathbf{r}'(t) = e^t(\cos t - \sin t)\mathbf{i} + e^t(\sin t + \cos t)\mathbf{j} + e^t\mathbf{k}$, and hence

$$|\mathbf{r}'(t)| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2 + 1} = e^t \sqrt{2\cos^2 t + 2\sin^2 t + 1} = e^t \sqrt{3}.$$

Hence

$$s(t) = \int_0^t e^{\tau} \sqrt{3} d\tau = (e^t - 1)\sqrt{3}.$$

Solving for t gives

$$t(s) = \ln(\frac{s}{\sqrt{3}} + 1).$$

So the parametrization of C by arc length is given by

$$\tilde{\mathbf{r}}(s) = \mathbf{r}(t(s)) = e^{t(s)} \cos t(s) \,\mathbf{i} + e^{t(s)} \sin t(s) \,\mathbf{j} + e^{t(s)} \,\mathbf{k}$$
$$= \left(\frac{s}{\sqrt{3}} + 1\right) \left(\cos \ln\left(\frac{s}{\sqrt{3}} + 1\right) \,\mathbf{i} + \sin \ln\left(\frac{s}{\sqrt{3}} + 1\right) \,\mathbf{j} + \mathbf{k}\right)$$

where $0 \le s \le (e^{2\pi} - 1)\sqrt{3}$.

(b) The curvature κ is defined as

$$\kappa = \left| \frac{\mathrm{d} \mathbf{T}}{\mathrm{d} s} \right|,$$

where T is the unit tangent vector. By the chain rule

$$\kappa = \frac{1}{|\mathbf{r}'(t)|} \left| \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}t} \right|,$$

From part (a) we get

$$\mathbf{T} = \frac{1}{|\mathbf{r}'(t)|}\mathbf{r}'(t) = \frac{1}{\sqrt{3}} ((\cos t - \sin t)\mathbf{i} + (\sin t + \cos t)\mathbf{j} + \mathbf{k})$$

which gives

$$\frac{d\mathbf{T}}{dt} = \frac{1}{\sqrt{3}} \left(\left(-\sin t - \cos t \right) \mathbf{i} + \left(\cos t - \sin t \right) \mathbf{j} \right)$$

and hence by a similar computation as in part (a)

$$\left| \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}t} \right| = \left| \frac{1}{\sqrt{3}} \left(\left(-\sin t - \cos t \right) \mathbf{i} + \left(\cos t - \sin t \right) \mathbf{j} \right) \right| = \frac{\sqrt{2}}{\sqrt{3}}.$$

The curvature of C at $\mathbf{r}(t)$ is thus

$$\kappa = \frac{1}{e^t \sqrt{3}} \cdot \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{2}}{3} e^{-t}.$$

3. (a) The ellipsoid S is given by the zero-level set of the function $F(x,y,z)=x^2+\frac{y^2}{4}+\frac{z^2}{9}-3$. We can hence find a normal vector of the tangent plane of S at (x_0,y_0,z_0) from $\nabla F(x_0,y_0,z_0)=2x_0\mathbf{i}+\frac{1}{2}y_0\mathbf{j}+\frac{2}{9}z_0\mathbf{k}=2\mathbf{i}+1\mathbf{j}+\frac{2}{3}\mathbf{k}$. The tangent plane is hence given by $\nabla F(x_0,y_0,z_0)\cdot(x-x_0,y-y_0,z-z_0)=0$, i.e.

$$2(x-1) + (y-2) + \frac{2}{3}(z-3) = 0$$

or equivalently,

$$6x + 3y + 2z = 18$$
.

(b) Using the fact that S is given by the zero-level set of the function F defined in part (a) the local existence of the function f follows from the Implicit Function Theorem if we can show that $\frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0$. The latter follows from $\frac{\partial F}{\partial z}(x_0, y_0, z_0) = \frac{2}{9}z_0 = \frac{2}{3}$. The Implicit Function Theorem gives

$$f_x(x_0, y_0) = -\frac{F_x(x_0, y_0, z_0)}{F_z(x_0, y_0, z_0)} = -\frac{2x_0}{\frac{2}{0}z_0} = -\frac{2}{\frac{2}{0}} = -3$$

and

$$f_y(x_0, y_0) = -\frac{F_y(x_0, y_0, z_0)}{F_z(x_0, y_0, z_0)} = -\frac{\frac{1}{2}y_0}{\frac{2}{9}z_0} = -\frac{1}{\frac{2}{3}} = -\frac{3}{2}.$$

The linearization of f at (x_0, y_0) is given by

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$= 3 - 3(x - 1) - \frac{3}{2}(y - 2)$$

$$= 9 - 3x - \frac{3}{2}y.$$

The graph of the linearization is given by the equation z = L(x, y) which agrees with the tangent plane found in part (a).

(c) The volume of the box is given by V(x,y,z) = 8xyz. It follows from the Theorem on Lagrange Multipliers that at a critical point $(x,y,z) \in S$ of V restricted to S there is a $\lambda \in \mathbb{R}$ such that $\nabla V(x,y,z) = \lambda \nabla F(x,y,z)$ where we use that the constraint S is given by the zero-level set of the function F defined in part (a). In order to find the critical points we have to solve the set of equations

$$V_x(x, y, z) = \lambda F_x(x, y, z),$$

$$V_y(x, y, z) = \lambda F_y(x, y, z),$$

$$V_z(x, y, z) = \lambda F_z(x, y, z),$$

$$F(x, y, z) = 0.$$

for x, y, z and λ . This gives

$$8yz = \lambda 2x,$$

$$8xz = \lambda \frac{1}{2}y,$$

$$8xy = \lambda \frac{2}{9}z,$$

$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 3,$$

As for x = 0, y = 0 or z = 0, V(x, y, z) = 0 we can assume $x, y, z \neq 0$. We then get

$$4\frac{yz}{x} = \lambda,$$

$$16\frac{xz}{y} = \lambda,$$

$$36\frac{xy}{z} = \lambda,$$

$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 3.$$

Equating the left sides of the first and the second equality gives y=2x. Equating the left sides of the first and the third equality gives z=3x. This allows one to eliminate y and z in the last equality to get $3x^2=3$ which gives x=1 (or x=-1 which we can discard by symmetry). So we get y=2x=2 and z=3x=3. The largest volume is hence $V=8\cdot 1\cdot 2\cdot 3=48$.

4. (a) We start with the computation of the left hand side. We have

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0 - x = -x.$$

Hence

$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_0^1 \int_{x^2}^{\sqrt{x}} -x \, dy \, dx = \int_0^1 -x(\sqrt{x} - x^2) \, dx$$
$$= \int_0^1 (-x^{3/2} + x^3) \, dx = -\frac{2}{5}x^{5/2} + \frac{1}{4}x^4 \Big|_0^1$$
$$= -\frac{2}{5} + \frac{1}{4} = \frac{5 - 8}{20} = -\frac{3}{20}.$$

We now compute the right hand side of the equation. We have $C = C_1 \cup C_2$ where C_1 corresponds to the part of the parabola $y = x^2$ which has parametrization $\mathbf{r}_1(t) = (t, t^2)$, $0 \le t \le 1$. The tangent vector corresponding to the parametrization \mathbf{r}_1 gives the desired orientation shown in figure. The part C_2 corresponds to the parabola $x = y^2$ which can be parametrized by $\mathbf{r}_2(t) = ((1-t)^2, 1-t)$ with $0 \le t \le 1$. The tangent vector associated with \mathbf{r}_2 gives the desired orientation on C_2 shown in the figure.. Using $\mathbf{r}'_1(t) = (1, 2t)$ and $\mathbf{r}'_2(t) = (-2(1-t), -1)$, we get

$$\oint_C P dx + Q dy = \int_0^1 \mathbf{F}(\mathbf{r}_1(t)) \cdot \mathbf{r}_1'(t) dt + \int_0^1 \mathbf{F}(\mathbf{r}_2(t)) \cdot \mathbf{r}_2'(t) dt
= \int_0^1 (t \cdot t^2, t^4) \cdot (1, 2t) dt + \int_0^1 \left((1 - t)^2 (1 - t), (1 - t)^2 \right) \cdot (-2(1 - t), -1) dt
= \int_0^1 (t^3 + 2t^5) dt + \int_0^1 \left(-2(1 - t)^4 - (1 - t)^3 \right) dt
= \frac{1}{4} + \frac{2}{6} + \int_0^1 \left(2s^4 + s^2 \right) ds
= \frac{1}{4} + \frac{1}{3} + \left(\frac{2}{5}s^5 + \frac{1}{3}s^3 \right) \Big|_1^0
= \frac{1}{4} + \frac{1}{3} - \frac{2}{5} - \frac{1}{3} = \frac{5 - 8}{20} = -\frac{3}{20}.$$